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Abstract— This paper presents a novel approach to build
consistent 3D maps for multi robot cooperation in USAR envi-
ronments. The sensor streams from unmanned aerial vehicles
(UAVs) and ground robots (UGV) are fused in one consistent
map. The UAV camera data are used to generate 3D point
clouds that are fused with the 3D point clouds generated by a
rolling 2D laser scanner at the UGV. The registration method is
based on the matching of corresponding planar segments that
are extracted from the point clouds. Based on the registration,
an approach for a globally optimized localization is presented.
Apart from the structural information of the point clouds, it is
important to mention that no further information is required
for the localization. Two examples show the performance of the
overall registration.

I. INTRODUCTION

Despite the growing technological advances, coping with
disaster scenarios is still a major challenge for robots and
humans. After 48 hours the probability of rescuing people
from a collapsed building is drastically reduced [1]. The
EU project TRADR develops novel science & technology
for human-robot teams to assist in disaster response efforts,
over multiple sorties during a mission. Various kinds of
robots collaborate with human team members to explore
the environment and to gather physical samples (fig. 1).
The goal is to enable the team to gradually develop its
understanding of the disaster area over multiple, possibly
asynchronous sorties (persistent environment models), to
improve team members’ understanding of how to work in
the area and to improve team-work. The fusion of different
sensor streams of different semi-autonomous robots (UAV
and UGV) in one consistent map is the basis for building the
environment models. The UGV can be equipped with several
sensors, e.g. tilting laser scanners and even actuators due to
its higher payload. The UAV is equipped with only a few
light sensors to reduce the weight and to increase the flight
time. According to the current state of the UAV market, it is
only possible to obtain important information in real-time by
using a monocular camera. Furthermore, additional sensors
such as GPS are available for localization, but a reliable
position determination cannot always be ensured depending
on the environment, e.g. close to buildings. The nature of
the resulting data, which differ due to different sensors, is
a major challenge. In order to use the data collaboratively,
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(a) UAVs (b) UGV

Fig. 1. UAVs and UGV of the TRADR project after the earthquake in
Amatrice / Italy 2016.

representations and algorithms have to be found that can
process data from different sources (more or less in real-
time).

For this work, a UGV with a laser scanner and a UAV
with a monocular camera are used. While a laser scanner
can directly provide distance information, more complex
methods – generally known as Structure from Motion (SfM)
– are used for extracting distance information from camera
recordings. The difficulty when combining the data is finding
corresponding regions that allow a robust transformation
between the two point clouds. Naively, this should be possi-
ble with standard point-based scan matching. Unfortunately,
point-based ICP fails due to the differences of the point
clouds from the different sensors. Laser scanners compute
precise radial point clouds whereas SfM or multi-view stereo
algorithms compute less precise, erroneous, and non equally
distributed dense point clouds, focused on brightness differ-
ences and textures. Therefore, geometrical structures have to
be described as invariant as possible against the individual
disturbances of the different sensors.

The objective of this work is the development of a method
for a typical rescue scenario. The first responder arrives at
the disaster site and uses the UAV to get an overview, i.e.
images and an initial 3D point cloud. Humans and the UGVs
use this initial sensor streams, which allow the localization of
the UGV in a vision-based map. The approach uses surfaces
that abstract from the underlying data structure and hence
can compensate disturbances while still containing sufficient
information for the motion estimation. The resulting 3D map
combines the information from both sensors and thus has a
higher information content. The collected data of the UAV
have to be processed by a SfM method independent of the
UGV. Subsequently, the results of the processing can be
provided to the UGV for a first localization.

The remaining paper is organized as follows: The next
section summarizes state of the art methods that can be



used to generate point clouds from camera recordings. Vari-
ous registration methods are also reviewed and section III
presents the selected registration method. An example of
how we used this method for globally optimized localization
is given in section IV. Several results of our experiments
are shown in section V. Videos can be found at youtube
www.youtube.com/watch?v=xAVR5aFv8VY.

II. RELATED WORK

A basic prerequisite for many tasks, such as navigation,
mapping or cooperation of UAV and UGV, is the robot
localization. When working with three-dimensional point
clouds, the registration is significantly affected by the success
of an exact localization [2]. Due to the aim of this work,
to localize the UAV and UGV together in a global map, a
registration method has to be found that can handle point
clouds from different sources. In this context, it is important
that the methods for registration as well as the generation of
vision-based point clouds can be combined.

A. Vision-based SLAM

In order to perform visual odometry, only keypoints
are selected, which make a robust correspondence search
possible. While some methods compute complex features
([3], [4]), new developments increasingly use image points
directly ([5]–[7]). Direct approaches have the advantage
that they are not reduced to certain feature points but can
exploit all image points to determine the odometry and depth
values and thus provide more dense reconstructions of the
environment. Depending on how many image points are
utilized, the approaches can be divided into dense and semi-
dense methods.

An example of a semi-dense approach is the SVO algo-
rithm, which is presented in the work of [7]. The method uses
point features, but these are not explicitly extracted. Rather
they are an implicit result of a direct motion estimation.
The initialization of the pose is achieved by minimizing the
photometric error. LSD-SLAM [8] provides another direct
approach. Based on the odometry method of [6], the algo-
rithm generates globally consistent maps of the environment
by means of graph optimization in large-area environments.
Similar to the SVO algorithm, a probabilistic representation
of the depth map is also used here to model inaccuracies.
[9] also uses a probabilistic approach, but the method is
based on a feature-based monocular SLAM system ([10]).
Furthermore, in contrast to SVO and LSD-SLAM, the depth
values of a reference image are not filtered over many
individual images, but only key images are used for the
reconstruction.

[11] presents one of the first real-time methods and pro-
vides dense reconstructions with a monocular camera. The
tracking of the camera is based on the approach of [3]. The
reconstruction is carried out using several key images. By
expanding to several images, regions that would be hidden in
two images or would be outside the corresponding image can
also be reconstructed with a higher probability. DTAM ([5])
also provides dense reconstructions in real-time. In order

to estimate the depth values, the method performs a global
energy reduction over many individual images. REMODE
([12]) is a method for the reconstruction of dense point
clouds, which integrates a Bayesian estimate into the opti-
mization process. By modeling uncertainties of measurement
for each pixel, regularization can be controlled precisely and
inaccuracies in the localization can be reduced. Real-time
capability is achieved through a CUDA-based implementa-
tion. For the pose estimation, the method of [7] is used.
One of the recent developments of dense reconstructions
is DPPTAM [13]. The approach reconstructs high textured
regions with a semi-dense approach and low textured regions
by approximation of surfaces. Thereby the assumption is
made that homogeneously colored image regions form a
plane, which can be determined by superpixels ([14]).

The procedures described so far fall under the category
of online procedures, i.e. they are real-time capable and
can deliver first results during camera recording. In contrast,
offline procedures require all collected recordings in advance
and then carry out the corresponding calculations. In [15],
a pipeline for reconstruction is presented that combines all
necessary processing steps in a software framework called
MVE. The framework is also capable of reconstructing
texturized surfaces.

B. Registration methods

Methods for registration can be divided roughly into point-
based or iterative and feature-based methods ([2], [16]).
An example of a known iterative method is the ICP-
algorithm, which has already been implemented in several
variants. According to [17] the transformation is determined
by minimizing the Euclidean distance of the found point
correspondences. The search for corresponding points and
the calculation of the associated transformation for the align-
ment of these points is finally repeated iteratively until pre-
defined limits have been reached. A disadvantage of iterative
methods, however, is that they can converge to a local
minimum under certain assumptions, such as an insufficient
overlay of the scenes [2]. In addition, they can be sensitive
to outliers and can be very computationally intensive with
large amounts of data [18]. If several point clouds have
to be registered, the generated scene must also be globally
consistent. To achieve better results, it is common that
feature-based methods are used for the initial registration and
iterative methods are used for refining the already estimated
transformation [2]. Features can be described by feature
descriptors that incorporate geometric structures. If surfaces
are used as a geometric structure, a high compression rate
and thus a fast correspondence search can be achieved [16].

The work of [19] introduces a SLAM algorithm based on
the registration of planar segments. The algorithm for the
extraction of planar segments is based on the work of [20],
which takes up the region-growing algorithm of [21] and
adapts it by optimizations for the use in a SLAM system.
For correspondence search and registration, the work of [22]
is used. The presented MUMC-algorithm (Minimally Uncer-
tain Maximum Consensus) maximizes geometric consistency



while minimizing the resulting uncertainties. As shown in
the work of [19], both faster and more robust results can
be obtained in comparison to an ICP-alorithm. [23] provides
another plane-based registration method, which is based on
the work of [19]. An approach that is also concerned with
the registration of point clouds from different sensor groups
is presented in [24]. As a first step, the method determines
structural descriptors. For faster calculation, the descriptors
are then projected into a subspace. A matching scheme is
used to compare the descriptors and compute vote scores.
The voting space is then used for place segmentation and
for registration.

For this work, an algorithm is developed that is based on
the approaches of [23] and [19]. The presented algorithm
for surface extraction can be applied to unorganized point
clouds and is fast in the calculation. The method of [19] has
also proven itself in a test environment that is very close to
a possible application area of this work.

III. POSE TRACKING

This section introduces the registration method used for
relative localization. The first step is the segmention of planes
from the source and the target point cloud as described in
[23]. Afterwards corresponding planes and the associated
transformation must be determined. The correspondence
search is based on [23], but in contrast to the original
algorithm, the area of the planes is determined by [25].
In addition, the correspondence search was extended by
the examination of overlapping planes. This is done as
follows: First, the transformation determined on the basis of
corresponding planes is temporarily applied to the planes to
be examined. Then the minimum and maximum coordinate
values of each plane are determined and the vectors vmin and
vmax are formed. Two planes dP and mP are overlapping
when

mvmin <
dvmax + ε and dvmin <

mvmax + ε (1)

is satisfied. Here ε is a positive number that defines a
tolerance range. The directions along the surface normals
of the target planes can be ignored during verification.

The last step is to determine an optimal transformation
from all corresponding planes as described in [19]. The rota-
tion and translation is calculated in a separate step. A plane
P will be defined by its oriented and normalized surface
normal n̂ and the distance d to the coordinate origin. If the
correspondence set Ω = {〈mPi1,

dPi2〉, i = 1, . . . , NΩ},
which assigns every plane dPi2 of the source point cloud a
corresponding plane mPi1 of the target point cloud, is known,
the optimal rotation can be calculated by minimizing the
following function:

f (R) =
1

2

NΩ∑
i=1

||R dn̂i2 − mn̂i1||2. (2)

The translation is expressed by the equation

Nm
d t = d, (3)

with

NNΩ×3 =


mn̂T1

...
mn̂TNΩ

 and dNΩ×1 =


md1 − dd1

...
mdNΩ

− ddNΩ

 .
(4)

The equation is solved by means of singular value decom-
position. The singular value decomposition of the matrix N
is given by

NNΩ×3 = UNΩ×NΩ
ΣNΩ×3V

T
3×3. (5)

Here the column vectors ui of U are the left singular vectors
and the column vectors vi of V are the right singular vectors.

Σ is a NΩ × 3 diagonal matrix, which contains the real
positive singular values σi. Afterwards, a rank decision for
the matrix N will be made, i.e. the rank r will be chosen so
that σr > 0 and σr+1 = · · · = σn = 0.

The best approximation of N is given by N̂r with

N̂r =

r∑
i=1

σiuiv
T
i , (6)

The best translation estimation for rank r can finally be
achieved by

m
d t =

r∑
i=1

σ−1
1 (ui · d) vi. (7)

If two laser point clouds are compared with one another, the
ICP algorithm can be used for further refining the translation.
The transformation already determined serves as an initial
position estimation. Another option is given by the odometry
estimation of the robot. If an additional translation estimation
m
d te could be computed, it can be used to determine the
missing translation directions vi, i = r + 1, . . . , 3 and can
be integrated with

m
d t =

r∑
i=1

σ−1
1 (ui · d) vi +

3∑
i=r+1

σ−1
1 (md te · vi) vi (8)

in the overall translation estimation.

IV. LOCALIZATION

This section describes how the registration procedure
described in section III can be used for localization and
mapping. In robot localization, a distinction can be made
between relative and absolute localization. In the case of
relative localization, the changes in the respective current
pose are determined from a known pose and thus the entire
trajectory is built step by step. In the absolute localization,
the pose is determined with respect to a given map. A
disadvantage of the relative localization is that errors in
the determination of the pose changes are accumulated and
thus the estimated trajectory as well as the constructed map
are not globally consistent. However, if the starting position



within a given map is known, the relative localization can be
optimized. For each update step, the new pose is compared
with the given map and a correction is made. The global
map is provided by the UAV, which takes images during a
first flight over the environment and generates a point cloud
by means of a vision-based SLAM algorithm. If the absolute
pose of the UGV is known in the global map, the map can
be extended by the information of the laser scan and a more
detailed map can be built step by step. This is useful, on the
one hand, in low-textured regions, which cannot be covered
by most camera-based methods. On the other hand, map
areas such as interiors that are not accessible to the UAV or
that are not visible in the event of a flyover due to occlusions
can also be included in the global map. All processing steps
involved are explained below; see fig. 2 for an overview of
the whole process.
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Fig. 2. Localization pipeline for laser point clouds with following global
optimization step.

Steps a–c of fig. 2 describe the dense reconstruction with
a suitable algorithm, e.g. MVE. After a reconstruction, the
vision-based point clouds have to be scaled (fig. 2, d). This
is necessary since the scaling factor for the reconstruction
cannot be unambiguously determined when using a monoc-
ular camera. A correct scaling factor can be determined in
several ways. For this work, the GPS coordinates recorded
by the UAV during its flight are used. For the calculation,
all positions estimated using the vision-based method are
assigned to the nearest GPS coordinates and the Euclidean
distances of adjacent points are calculated. The ratio of the

average distances finally indicates the scaling factor.
As preparation for the plane segmentation, the point clouds

are filtered through several processing steps (fig. 2, e and k).
The aim of the preprocessing is to increase the robustness of
the plane segmentation and thus the subsequent registration.
By filtering, the point clouds are also reduced in size, which
can considerably reduce the computational effort. For this
work, a voxel grid filter and an outlier removal filter are
applied, but additional filters can be added if necessary.

The relative pose of the UGV is updated with each new
laser scan (fig. 2, l–p). First of all, a plane segmentation is
carried out once for each new point cloud. Then the relative
transformation between the last and the last but one point
cloud is determined by means of a planar segment-based
registration. For the initial laser point cloud, the assumption
is made that it has approximately the correct pose with
respect to the global map of the UAV. One way to determine
the pose is by matching GPS coordinates. An exact pose is
not necessary, since the initial pose is subsequently adjusted
as part of the global optimization. If the initial pose was
determined, an accumulation of the relative transformations
can be used to estimate the current global pose. This pose
will be optimized by aligning the associated point cloud
with the global point cloud of the UAV. To achieve this,
a planar segment-based registration is performed between
the current laser point cloud and a section of the global
vision-based point cloud (fig. 2, f–h). The position and size
of the section is determined by the position and size of the
current laser point cloud. Since the relative transformation is
not always exact, the section is additionally expanded by a
tolerance range. If the UGV moves in regions that are not
or only slightly captured in the global point cloud of the
UAV, a global optimization is not possible. In this case, a
relative optimization can be carried out using a metascan
algorithm (fig. 2, q). For this purpose the simultaneous
matching algorithm from [26] was adapted for a surface-
based approach and used for this work as follows:

1) The first point cloud that could no longer be optimized
globally is defined as the master point cloud and de-
termines the coordinate system. The already calculated
relative transformation of a new point cloud serves as
the initial registration of the relative optimization.

2) A list is initialized with the new point cloud.
3) The following three steps are repeated until the list

contains no more elements:

a) The first point cloud in the list is removed as the
current point cloud from the list.

b) If the current point cloud is not the master point
cloud, then the neighbouring point clouds of the
current point cloud are calculated. A point cloud
is regarded as a neighbouring point cloud when
a given minimum number of surfaces overlap
with the surfaces of the current point cloud.
All neighbouring point clouds are then grouped
into a single point cloud and a planar segment-
based registration with the current point cloud is



(a) Point cloud 1 (b) Point cloud 2 (c) Point cloud 3

(d) Point clouds 1 and 2

Fig. 3. Intermediate result of the relative optimization with three laser point
clouds recorded on the site of Fraunhofer IAIS. The segmented surfaces are
marked in color. The red dot indicates the respective position of the UGV.
(c) shows the current point cloud, which was initially registered with point
cloud (b). Point clouds 1 and 2 represent neighbouring point clouds of point
cloud 3 and are summarized in (d). Point cloud 2 has gaps due to occlusions
(see red markings). By a combination with point cloud 1, however, the gaps
could be closed and thus a better calculation of the area size with respect
to point cloud 3 could be carried out (see red markings in (d)).

performed.
c) If the calculated transformation changes the pose

of the current point cloud by more than a pre-
defined minimum, all neighbouring point clouds
that are not already in the list are added to the
list.

Figure 3 illustrates a possible result of the relative opti-
mization.

So far, the assumption has been made that the pose of the
first laser point cloud is approximately known with respect
to the global point cloud. In the following, an approach to
determine the initial pose is presented, which only uses the
structural information from the point clouds. The procedure
is orientated on [27] and can be described as follows:

1) The planes of the initial laser point clouds are seg-
mented.

2) The global point cloud is divided into cells. The
size of a cell is determined by the size of the laser
point cloud plus a tolerance range. For each cell, a
plane segmentation as well as a planar segment-based
registration with the laser point cloud is done.

3) For each registration with a cell, the proportion of the
match is calculated as follows:

r =
|K|

max (|mP |, |dP |)
, (9)

where |K| is the number of matching planes. The
respective number of segmented planes of the laser
point cloud and the point cloud set by the cell is given
by |mP | and |dP |. The better the current cell represents
the position of the laser point cloud, the greater is the
number of corresponding planes. The number |K| of
the corresponding planes therefore corresponds to a

TABLE I
PLANE SEGMENTATION OF THE LASER POINT CLOUD.

Nr. Points Preprocessing [s] Segmentation [s] Planes
1 103090 0.0090 0.1989 8
2 135233 0.0096 0.8091 9
3 182623 0.0171 1.2556 11
4 265629 0.0175 1.4302 14
5 286333 0.0248 2.5137 19
6 291043 0.0197 3.0201 29
7 289934 0.0188 2.8454 24

TABLE II
REGISTRATION OF THE LASER POINT CLOUD.

Pair Registration [s] Correspondences ICP [s]
1 → 2 0.0116 2 0.817343
2 → 3 0.3643 8 0.231159
3 → 4 0.0814 7 0.725623
4 → 5 2.3613 18 1.02961
5 → 6 4.6153 15 0.72616
6 → 7 7.7108 17 0.839342

large proportion of the maximum possible number of
correspondences. For cells with few common planes,
the proportion of correspondences is small compared to
the possible number of correspondences. The cell that
best represents the position of the laser point cloud
is given by the largest value r. If r1 is the largest
determined value, the following criteria must be met
for a unique match:

r1 > α and r1 > βr2. (10)

α is a pre-defined threshold that r1 must reach at least.
r2 is the second largest value given by equation 9. The
ratio β defines the relationship between r1 and r2. If
these criteria cannot be fulfilled, there are several cells
with a similar agreement and the best position for the
laser point cloud is not clearly determinable. In this
case, further laser point clouds have to be collected
and re-evaluated. The global position of the laser point
cloud can finally be determined by the combination of
the cell position and the transformation, which was
calculated in the context of the planar segment-based
registration.

TABLE III
PLANE SEGMENTATION OF THE VISION-BASED POINT CLOUD SECTIONS.

Nr. Points Preprocessing [s] Segmentation [s] Planes
1 30745 0.0035 2.4906 53
2 49258 0.0067 6.9224 109
3 53586 0.0079 11.2961 145
4 48600 0.0072 10.2647 149
5 32366 0.0055 6.2082 111
6 28300 0.0050 6.4789 108
7 9754 0.0028 2.0793 61



TABLE IV
REGISTRATION OF THE LASER POINT CLOUDS WITH THE GLOBAL

VISION-BASED POINT CLOUD.

Pair Registration [s] Correspondences ICP [s]
1 Laser → Camera 0.012568 6 -
2 Laser → Camera 0.2772 7 0.480169
3 Laser → Camera 0.5608 11 -
4 Laser → Camera 0.4258 9 0.630182
5 Laser → Camera 0.5098 14 -
6 Laser → Camera 1.3474 20 -
7 Laser → Camera 0.0896 0 0.861286

TABLE V
RELATIVE POSE ERROR AND ABSOLUTE TRAJECTORY ERROR OF THE

RELATIVE LOCALIZATION.

Metric Ermse [m] Emin [m] Emax [m]
RPE 3.3579 0.2090 8.1820
ATE 3.1074 0.6780 7.4754

V. EXPERIMENTS

In this section the results of the planar segment-based
localization are evaluated. For the test environment the
former site of the blast furnace Phoenix-West in Dortmund
was selected (see fig. 8).

The UGV started near the entrance area of the factory
building, drove further into the hall and finished the record-
ings there. A total of 7 laser scans were recorded. The relative
pose error and absolute trajectory error (RPE / ATE) of the
estimated trajectory after [28] were used as evaluation criteria
for the localization. In order to obtain a reference trajectory
of the UGV, adjacent laser point clouds were aligned relative
to each other and the poses were subsequently refined with
the SLAM framework 3DTK [29]. The vision-based point
cloud for the following experiments was generated by MVE
with images at a resolution of 640 × 480 pixels. MVE was
choosen since it provides convincing results with respect to
the estimated trajectory as well as the Mean Plane Variance
(MPV) and Mean Map Entropy (MME), which were com-
puted according to [30]. However the approach presented in
this work is not limited to MVE.

The processing times of the pose tracking without further
optimization steps are listed in the tables I and II. The RPE
and ATE are represented in table V and fig. 4. The errors in
the trajectory are caused by less accurate registration of the
first two point clouds. The reason for this are inadequate
structural elements, that do not allow accurate estimation
of all directions of translation (see fig. 5). For the globally
optimized trajectory, the results listed in table III and
table IV were obtained. The deviations in the trajectory
could be reduced by the optimization. In contrast to the
relative localization, the global point cloud enabled the
correct registration of the first two point clouds by additional
structures (see fig. 6 and fig. 7, for the RPE and ATE).

(a) RPE (b) ATE

Fig. 4. RPE and ATE of the relative localization.

(a) RPE (b) ATE

Fig. 5. RPE and ATE of the globally optimized localization.

The overall registration result is shown in fig. 9. The initial
localization was evaluated as a final test. The test sequence
locates each laser point cloud in the global point cloud. The
first five point clouds could be located correctly. The two
last point clouds represented areas within the factory and
had too little overlap with the global point cloud.

VI. CONCLUSION AND FUTURE WORK

The base for human to robot and robot to robot collabora-
tion is a persistent environment model, which implies to fuse
different sensor streams of different modalities. We present
a novel approach for the plane-based localization of laser
point clouds (UGV) in monocular vision point clouds (UAV).
The method first performs a plane segmentation and then
attempts to register neighbouring point clouds by means of
corresponding planes. The method uses a global point cloud
generated by the UAV’s camera recordings for optimization.
The evaluation showed that the relative localization provided
a reliable registration and is therefore suitable as an initial
estimation for global optimization. Point clouds, which had
inadequate structures or slight overlaps with neighbouring
point clouds, prevented accurate registration. Differences
in the relative localization could be offset by the global
optimization. A further important component of the global
localization is the determination of the initial pose of the
UGV. We suggested an automatic search of the start sector
with subsequent registration. Areas with more than 50%
overlap were successfully localized. When evaluating the
vision-based procedures, it turned out that MVE ([15]) is
best suited for planar segment-based registration.

The localization method developed in this work will be
extended for future work, e.g. by the utilization of additional



(a) From: Point cloud 1 to (b) Point cloud 2

(c) From: Point cloud 2 to (d) Point cloud 3

Fig. 6. Registration of the first three point clouds. Corresponding planes
are randomly colored. The red marked area in image a could not be
captured from the laser scanner in image b and thus offers no possibility
for determining the direction of translation.

(a) Point cloud 1 (b) Section 1

(c) Point cloud 2 (d) Section 2

Fig. 7. Registered pairs of the globally optimized localization.

sensor information. For example, laser point clouds with
color information can be generated by the camera on the
UGV. For the correspondence search, this color information,
in addition to the surface area, forms a further useful criterion
for matching surfaces. When possible, GPS coordinates can
also be used to support the localization.
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